Alleviation of fatty acid and hypoxia-reoxygenation-induced proximal tubule deenergization by ADP/ATP carrier inhibition and glutamate.
نویسندگان
چکیده
Kidney proximal tubules develop a severe but highly reversible energetic deficit due to nonesterified fatty acid (NEFA)-induced dissipation of mitochondrial membrane potential (DeltaPsi(m)) during reoxygenation after severe hypoxia. To assess the mechanism for this behavior, we have compared the efficacies of different NEFA for inducing mitochondrial deenergization in permeabilized tubules measured using safranin O uptake and studied the modification of NEFA-induced deenergization by inhibitors of the ADP/ATP carrier and glutamate using both normoxic tubules treated with exogenous NEFA and tubules deenergized during hypoxia-reoxygenation (H/R). Among the long-chain NEFA that accumulate during H/R of isolated tubules and ischemia-reperfusion of the kidney in vivo, oleate, linoleate, and arachidonate had strong effects to dissipate DeltaPsi(m) that were slightly greater than palmitate, while stearate was inactive at concentrations reached in the cells. This behavior correlates well with the protonophoric effects of each NEFA. Inhibition of the ADP/ATP carrier with either carboxyatractyloside or bongkrekic acid or addition of glutamate to compete for the aspartate/glutamate carrier improved DeltaPsi(m) in the presence of exogenous oleate and after H/R. Effects on the two carriers were additive and restored safranin O uptake to as much as 80% of normal under both conditions. The data strongly support NEFA cycling across the inner mitochondrial membrane using anion carriers as the main mechanism for NEFA-induced deenergization in this system and provide the first evidence for a contribution of this process to pathophysiological events that impact importantly on energetics of intact cells.
منابع مشابه
Substrate Modulation of Fatty Acid Effects on Energization and Respiration of Kidney Proximal Tubules during Hypoxia/Reoxygenation
Kidney proximal tubules subjected to hypoxia/reoxygenation develop a nonesterified fatty acid-induced energetic deficit characterized by persistent partial mitochondrial deenergization that can be prevented and reversed by citric acid cycle substrates. To further assess the role of competition between fatty acids and substrates on inner membrane substrate carriers in the deenergization and the ...
متن کاملEvidence for involvement of nonesterified fatty acid-induced protonophoric uncoupling during mitochondrial dysfunction caused by hypoxia and reoxygenation.
BACKGROUND Proximal tubules subjected to hypoxia in vitro under conditions relevant to ischaemia in vivo develop an energetic deficit that is not corrected even after full reoxygenation. We have provided evidence that accumulation of nonesterified fatty acids (NEFA) is the primary reason for this energetic deficit. In this study, we have further investigated the mechanism for the NEFA-induced e...
متن کاملAnaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury.
We have further examined the mechanisms for a severe mitochondrial energetic deficit, deenergization, and impaired respiration in complex I that develop in kidney proximal tubules during hypoxia-reoxygenation, and their prevention and reversal by supplementation with alpha-ketoglutarate (alpha-KG) + aspartate. The abnormalities preceded the mitochondrial permeability transition and cytochrome c...
متن کاملAssessment of mitochondrial membrane potential in proximal tubules after hypoxia-reoxygenation.
Proximal tubules develop a severe energetic deficit during hypoxia-reoxygenation (H/R) that previous studies using fluorescent potentiometric probes have suggested is characterized by sustained, partial mitochondrial deenergization. To validate the primary occurrence of mitochondrial deenergization in the process, optimize approaches for estimating changes in mitochondrial membrane potential (D...
متن کاملRegulation of the mitochondrial permeability transition in kidney proximal tubules and its alteration during hypoxia-reoxygenation.
Development of the mitochondrial permeability transition (MPT) can importantly contribute to lethal cell injury from both necrosis and apoptosis, but its role varies considerably with both the type of cell and type of injury, and it can be strongly opposed by the normally abundant endogenous metabolites ADP and Mg(2+). To better characterize the MPT in kidney proximal tubule cells and assess it...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 292 5 شماره
صفحات -
تاریخ انتشار 2007